123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.utils.tools import load_job_config
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import HomoOneHotEncoder
- from pipeline.component.homo_feature_binning import HomoFeatureBinning
- from pipeline.component import FederatedSample
- from pipeline.component import HomoLR
- from pipeline.component import HomoSecureBoost
- from pipeline.component import LocalBaseline
- from pipeline.component import Reader
- from pipeline.interface import Data
- from pipeline.interface import Model
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_homo_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_homo_host", "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- reader_1 = Reader(name="reader_1")
- reader_1.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_1.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0", with_label=True)
- data_transform_1 = DataTransform(name="data_transform_1")
- federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="downsample",
- fractions=[[0, 1.0], [1, 1.0]], task_type="homo")
- homo_binning_0 = HomoFeatureBinning(name='homo_binning_0', sample_bins=10, method="recursive_query")
- homo_binning_1 = HomoFeatureBinning(name='homo_binning_1')
- homo_onehot_0 = HomoOneHotEncoder(name='homo_onehot_0', need_alignment=True)
- homo_onehot_1 = HomoOneHotEncoder(name='homo_onehot_1')
- homo_lr_0 = HomoLR(name="homo_lr_0", penalty="L2", tol=0.0001, alpha=1.0,
- optimizer="rmsprop", max_iter=5)
- homo_lr_1 = HomoLR(name="homo_lr_1")
- local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression",
- model_opts={"penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True,
- "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr"})
- local_baseline_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True)
- local_baseline_0.get_party_instance(role='host', party_id=host).component_param(need_run=True)
- local_baseline_1 = LocalBaseline(name="local_baseline_1")
- homo_secureboost_0 = HomoSecureBoost(name="homo_secureboost_0", num_trees=3)
- homo_secureboost_1 = HomoSecureBoost(name="homo_secureboost_1", num_trees=3)
- evaluation_0 = Evaluation(name="evaluation_0")
- evaluation_1 = Evaluation(name="evaluation_1")
- pipeline.add_component(reader_0)
- pipeline.add_component(reader_1)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data),
- model=Model(model=data_transform_0.output.model))
- pipeline.add_component(federated_sample_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(homo_binning_0, data=Data(data=federated_sample_0.output.data))
- pipeline.add_component(homo_binning_1, data=Data(data=data_transform_1.output.data),
- model=Model(model=homo_binning_0.output.model))
- pipeline.add_component(homo_onehot_0, data=Data(data=homo_binning_0.output.data))
- pipeline.add_component(homo_onehot_1, data=Data(data=homo_binning_1.output.data),
- model=Model(model=homo_onehot_0.output.model))
- pipeline.add_component(homo_lr_0, data=Data(data=homo_onehot_0.output.data))
- pipeline.add_component(homo_lr_1, data=Data(data=homo_onehot_1.output.data),
- model=Model(model=homo_lr_0.output.model))
- pipeline.add_component(local_baseline_0, data=Data(data=homo_onehot_0.output.data))
- pipeline.add_component(local_baseline_1, data=Data(data=homo_onehot_1.output.data),
- model=Model(model=local_baseline_0.output.model))
- pipeline.add_component(homo_secureboost_0, data=Data(data=homo_onehot_0.output.data))
- pipeline.add_component(homo_secureboost_1, data=Data(data=homo_onehot_1.output.data),
- model=Model(model=homo_secureboost_0.output.model))
- pipeline.add_component(evaluation_0,
- data=Data(
- data=[homo_lr_0.output.data, homo_lr_1.output.data,
- local_baseline_0.output.data, local_baseline_1.output.data]))
- pipeline.add_component(evaluation_1,
- data=Data(
- data=[homo_secureboost_0.output.data, homo_secureboost_1.output.data]))
- pipeline.compile()
- pipeline.fit()
- print(pipeline.get_component("evaluation_0").get_summary())
- print(pipeline.get_component("evaluation_1").get_summary())
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|