123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import argparse
- from pipeline.backend.pipeline import PipeLine
- from pipeline.component import DataTransform
- from pipeline.component import Evaluation
- from pipeline.component import HeteroLR
- from pipeline.component import SampleWeight
- from pipeline.component import Intersection
- from pipeline.component import Reader
- from pipeline.interface import Data, Model
- from pipeline.utils.tools import load_job_config
- def main(config="../../config.yaml", namespace=""):
- # obtain config
- if isinstance(config, str):
- config = load_job_config(config)
- parties = config.parties
- guest = parties.guest[0]
- host = parties.host[0]
- arbiter = parties.arbiter[0]
- guest_train_data = {"name": "breast_hetero_guest", "namespace": f"experiment{namespace}"}
- host_train_data = {"name": "breast_hetero_host", "namespace": f"experiment{namespace}"}
- pipeline = PipeLine().set_initiator(role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter)
- reader_0 = Reader(name="reader_0")
- reader_0.get_party_instance(role='guest', party_id=guest).component_param(table=guest_train_data)
- reader_0.get_party_instance(role='host', party_id=host).component_param(table=host_train_data)
- data_transform_0 = DataTransform(name="data_transform_0")
- data_transform_0.get_party_instance(
- role='guest',
- party_id=guest).component_param(
- with_label=True,
- label_name="y",
- label_type="int",
- output_format="dense")
- data_transform_0.get_party_instance(role='host', party_id=host).component_param(with_label=False)
- intersection_0 = Intersection(name="intersection_0")
- sample_weight_0 = SampleWeight(name="sample_weight_0")
- sample_weight_0.get_party_instance(role='guest', party_id=guest).component_param(need_run=True,
- class_weight="balanced")
- sample_weight_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)
- sample_weight_1 = SampleWeight(name="sample_weight_1")
- hetero_lr_0 = HeteroLR(name="hetero_lr_0", optimizer="nesterov_momentum_sgd", tol=0.001,
- alpha=0.01, max_iter=20, early_stop="weight_diff", batch_size=-1,
- learning_rate=0.15,
- init_param={"init_method": "zeros"})
- evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary", pos_label=1)
- # evaluation_0.get_party_instance(role='host', party_id=host).component_param(need_run=False)
- pipeline.add_component(reader_0)
- pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data))
- pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data))
- pipeline.add_component(sample_weight_0, data=Data(data=intersection_0.output.data))
- pipeline.add_component(sample_weight_1,
- data=Data(data=intersection_0.output.data),
- model=Model(model=sample_weight_0.output.model))
- pipeline.add_component(hetero_lr_0, data=Data(train_data=sample_weight_1.output.data))
- pipeline.add_component(evaluation_0, data=Data(data=hetero_lr_0.output.data))
- pipeline.compile()
- pipeline.fit()
- # predict
- # deploy required components
- pipeline.deploy_component([data_transform_0, intersection_0, sample_weight_0, hetero_lr_0])
- predict_pipeline = PipeLine()
- # add data reader onto predict pipeline
- predict_pipeline.add_component(reader_0)
- # add selected components from train pipeline onto predict pipeline
- # specify data source
- predict_pipeline.add_component(
- pipeline, data=Data(
- predict_input={
- pipeline.data_transform_0.input.data: reader_0.output.data}))
- # run predict model
- predict_pipeline.predict()
- if __name__ == "__main__":
- parser = argparse.ArgumentParser("PIPELINE DEMO")
- parser.add_argument("-config", type=str,
- help="config file")
- args = parser.parse_args()
- if args.config is not None:
- main(args.config)
- else:
- main()
|