123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- #!/usr/bin/env python
- # -*- coding: utf-8 -*-
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- import copy
- from federatedml.param.glm_param import LinearModelParam
- from federatedml.param.callback_param import CallbackParam
- from federatedml.param.encrypt_param import EncryptParam
- from federatedml.param.encrypted_mode_calculation_param import EncryptedModeCalculatorParam
- from federatedml.param.cross_validation_param import CrossValidationParam
- from federatedml.param.init_model_param import InitParam
- from federatedml.param.sqn_param import StochasticQuasiNewtonParam
- from federatedml.param.stepwise_param import StepwiseParam
- from federatedml.util import consts
- class LinearParam(LinearModelParam):
- """
- Parameters used for Linear Regression.
- Parameters
- ----------
- penalty : {'L2' or 'L1'}
- Penalty method used in LinR. Please note that, when using encrypted version in HeteroLinR,
- 'L1' is not supported. When using Homo-LR, 'L1' is not supported
- tol : float, default: 1e-4
- The tolerance of convergence
- alpha : float, default: 1.0
- Regularization strength coefficient.
- optimizer : {'sgd', 'rmsprop', 'adam', 'sqn', 'adagrad'}
- Optimize method
- batch_size : int, default: -1
- Batch size when updating model. -1 means use all data in a batch. i.e. Not to use mini-batch strategy.
- learning_rate : float, default: 0.01
- Learning rate
- max_iter : int, default: 20
- The maximum iteration for training.
- init_param: InitParam object, default: default InitParam object
- Init param method object.
- early_stop : {'diff', 'abs', 'weight_dff'}
- Method used to judge convergence.
- a) diff: Use difference of loss between two iterations to judge whether converge.
- b) abs: Use the absolute value of loss to judge whether converge. i.e. if loss < tol, it is converged.
- c) weight_diff: Use difference between weights of two consecutive iterations
- encrypt_param: EncryptParam object, default: default EncryptParam object
- encrypt param
- encrypted_mode_calculator_param: EncryptedModeCalculatorParam object, default: default EncryptedModeCalculatorParam object
- encrypted mode calculator param
- cv_param: CrossValidationParam object, default: default CrossValidationParam object
- cv param
- decay: int or float, default: 1
- Decay rate for learning rate. learning rate will follow the following decay schedule.
- lr = lr0/(1+decay*t) if decay_sqrt is False. If decay_sqrt is True, lr = lr0 / sqrt(1+decay*t)
- where t is the iter number.
- decay_sqrt: Bool, default: True
- lr = lr0/(1+decay*t) if decay_sqrt is False, otherwise, lr = lr0 / sqrt(1+decay*t)
- validation_freqs: int, list, tuple, set, or None
- validation frequency during training, required when using early stopping.
- The default value is None, 1 is suggested. You can set it to a number larger than 1 in order to speed up training by skipping validation rounds.
- When it is larger than 1, a number which is divisible by "max_iter" is recommended, otherwise, you will miss the validation scores of the last training iteration.
- early_stopping_rounds: int, default: None
- If positive number specified, at every specified training rounds, program checks for early stopping criteria.
- Validation_freqs must also be set when using early stopping.
- metrics: list or None, default: None
- Specify which metrics to be used when performing evaluation during training process. If metrics have not improved at early_stopping rounds, trianing stops before convergence.
- If set as empty, default metrics will be used. For regression tasks, default metrics are ['root_mean_squared_error', 'mean_absolute_error']
- use_first_metric_only: bool, default: False
- Indicate whether to use the first metric in `metrics` as the only criterion for early stopping judgement.
- floating_point_precision: None or integer
- if not None, use floating_point_precision-bit to speed up calculation,
- e.g.: convert an x to round(x * 2**floating_point_precision) during Paillier operation, divide
- the result by 2**floating_point_precision in the end.
- callback_param: CallbackParam object
- callback param
- """
- def __init__(self, penalty='L2',
- tol=1e-4, alpha=1.0, optimizer='sgd',
- batch_size=-1, learning_rate=0.01, init_param=InitParam(),
- max_iter=20, early_stop='diff',
- encrypt_param=EncryptParam(), sqn_param=StochasticQuasiNewtonParam(),
- encrypted_mode_calculator_param=EncryptedModeCalculatorParam(),
- cv_param=CrossValidationParam(), decay=1, decay_sqrt=True, validation_freqs=None,
- early_stopping_rounds=None, stepwise_param=StepwiseParam(), metrics=None, use_first_metric_only=False,
- floating_point_precision=23, callback_param=CallbackParam()):
- super(LinearParam, self).__init__(penalty=penalty, tol=tol, alpha=alpha, optimizer=optimizer,
- batch_size=batch_size, learning_rate=learning_rate,
- init_param=init_param, max_iter=max_iter, early_stop=early_stop,
- encrypt_param=encrypt_param, cv_param=cv_param, decay=decay,
- decay_sqrt=decay_sqrt, validation_freqs=validation_freqs,
- early_stopping_rounds=early_stopping_rounds,
- stepwise_param=stepwise_param, metrics=metrics,
- use_first_metric_only=use_first_metric_only,
- floating_point_precision=floating_point_precision,
- callback_param=callback_param)
- self.sqn_param = copy.deepcopy(sqn_param)
- self.encrypted_mode_calculator_param = copy.deepcopy(encrypted_mode_calculator_param)
- def check(self):
- descr = "linear_regression_param's "
- super(LinearParam, self).check()
- if self.optimizer not in ['sgd', 'rmsprop', 'adam', 'adagrad', 'sqn']:
- raise ValueError(
- descr + "optimizer not supported, optimizer should be"
- " 'sgd', 'rmsprop', 'adam', 'sqn' or 'adagrad'")
- self.sqn_param.check()
- if self.encrypt_param.method != consts.PAILLIER:
- raise ValueError(
- descr + "encrypt method supports 'Paillier' only")
- return True
|