1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- #
- # Copyright 2019 The FATE Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- #
- from federatedml.protobuf import parse_pb_buffer
- def extract_woe_array_dict(model_param_dict, host_idx=0):
- if len(model_param_dict.get("multiClassResults", {}).get("labels", [])) > 2:
- raise ValueError(f"Does not support transforming model trained on multi-label data. Please check.")
- host_result = model_param_dict.get("hostResults", [])[host_idx].get("binningResult", {})
- woe_array_dict = {}
- for col, res in host_result.items():
- woe_array_dict[col] = {"woeArray": res.get("woeArray", [])}
- return woe_array_dict
- def merge_woe_array_dict(pb_name, model_param_pb, model_param_dict, woe_array_dict):
- model_param_pb = parse_pb_buffer(pb_name, model_param_pb)
- header, anonymous_header = list(model_param_pb.header), list(model_param_pb.header_anonymous)
- if len(header) != len(anonymous_header):
- raise ValueError(
- "Given header length and anonymous header length in model param do not match. "
- "Please check!"
- )
- anonymous_col_name_dict = dict(zip(header, anonymous_header))
- for col_name in model_param_pb.binning_result.binning_result:
- try:
- woe_array = woe_array_dict[anonymous_col_name_dict[col_name]]["woeArray"]
- except KeyError:
- continue
- model_param_pb.binning_result.binning_result[col_name].woe_array[:] = woe_array
- model_param_dict["binningResult"]["binningResult"][col_name]["woeArray"] = woe_array
- for col_name in model_param_pb.multi_class_result.results[0].binning_result:
- try:
- woe_array = woe_array_dict[anonymous_col_name_dict[col_name]]["woeArray"]
- except KeyError:
- continue
- model_param_pb.multi_class_result.results[0].binning_result[col_name].woe_array[:] = woe_array
- model_param_dict["multiClassResult"]["results"][0]["binningResult"][col_name]["woeArray"] = woe_array
- return model_param_pb.SerializeToString(), model_param_dict
- def set_model_meta(model_meta_dict):
- model_meta_dict.get("transformParam", {})["transformType"] = "woe"
- return model_meta_dict
|